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Modeling Human Pilot Cue Utilization with Applications
to Simulator Fidelity Assessment

Y. Zeyada¤ and R. A. Hess†

University of California, Davis, Davis, California 95616

An analytical investigation to model the manner in which pilots perceive and utilize visual, proprioceptive, and
vestibular cues in a ground-based � ight simulator was undertaken. Data from a NASA Ames Research Center
vertical motion simulator study of a simple, single-degree-of-freedom rotorcraft bob-up/down maneuver were em-
ployed in the investigation.The study was part of a larger research effort that has the creation of a methodologyfor
determining � ight simulator � delity requirements as its ultimate goal. The study utilized a closed-loop feedback
structure of the pilot/simulator system that included the pilot, the cockpit inceptor, the dynamics of the simulated
vehicle, and the motion system. With the exception of time delays that accrued in visual scene production in the
simulator, visual scene effects were not included in this study. Pilot/vehicle analysis and fuzzy-inference identi� ca-
tion were employed to study the changes in � delity that occurred as the characteristics of the motion system were
varied over � ve con� gurations. The data from three of the � ve pilots who participated in the experimental study
were analyzed in the fuzzy-inference identi� cation. Results indicate that both the analytical pilot/vehicle analysis
and the fuzzy-inference identi� cation can be used to identify changes in simulator � delity for the task examined.

Nomenclature
A, B = matrices in state-space description

of vehicle dynamics
C = input to structural pilot model
E = error signal in structural pilot model
EM = input to closed neuromuscular/vestibular

control loop in structural pilot model
h, Çh, ḧ = height deviation, velocity, and acceleration in

bob-up/down maneuver, ft, ft/s, ft/s2

hc = input to modeled pilot/vehicle system, ft
hcom = inverse dynamics command to modeled

pilot/vehicle system, ft
hdes = desired vertical position time history for

modeled pilot/vehicle, ft
ḧmotion / ḧcommand = simulator motion dynamics
Ke, K Çm = gain values in visual and vestibular loops

in structural pilot model
Kh = gain in pilot transfer function Yph

Td = completion time in bob-up/down maneuver,
used in de� ning hdes , s

UM = proprioceptivefeedback variable in structural
pilot model

US = vestibular feedback variable in structural pilot
model

u = control vector in state-space description of
vehicle dynamics

VBU , VBD = volumes beneath fuzzy inference surface view
plots for bob-up (BU) and bob-down (BD)
maneuvers

x = state-variablematrix in state-space description
of vehicle dynamics

YC = transfer function of vehicle in structural pilot
model

YFS = transfer function of force-feel system
in structural pilot model

YNM = transfer function of neuromuscular system
in structural pilot model
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YP = transfer function of structural pilot model,
(M /C )

Yph = transfer function of pilot model for outer,
position loop in bob-up/down task

z = dynamic in� ow variable in state-space
description of vehicle dynamics, ft/s2

d c = collective inceptor motion, in.
d M = structural pilot model output, identical to d c

f NM = damping ratio in transfer function of
neuromuscular system in structural pilot
model

s 0 = time delay in structural pilot model, s
x c = crossover frequency, rad/s
x NM = undamped natural frequency in transfer

function of neuromuscular system in structural
pilot model, rad/s

Introduction and Background

V ALIDATING the � delity of ground-based � ight simulators is
a problem of continuing interest to the simulationcommunity.

The ultimate objective of the research to be described is the devel-
opment of a procedurefor determiningsimulation requirementsthat
will ensure acceptable � delity. The need for such requirements can
be clearly seen from Fig. 1, taken from Ref. 1. Here a comparison
is made between the Cooper–Harper pilot opinion ratings obtained
from � ight-test and moving-base simulator evaluations for a group
of low-speed rotorcraft maneuvers. As Fig. 1 indicates, there ex-
ists a signi� cant difference between the ratings given in � ight and
simulation, indicating shortcomings in the � delity of the simulator.
An analytical approach to addressing some of these problems was
discussed by Hess et al.2,3

The approach to be discussed builds on the work of Refs. 2 and
3 and utilizes a model of the pilot’s perceptual and response char-
acteristics as captured in the structural pilot model discussed by
Hess.4 In addition, fuzzy-inference identi� cation of human pilot
behavior is exploited. Although the use of fuzzy-inference mod-
els to describe human control behavior is not new, to the authors’
knowledgethis is the � rst time theyhavebeen employedin simulator
� delity studies.5,6

Experiment
A pilot-in-the-loop simulation of a rotorcraft bob-up/down ma-

neuverusing the NASA Ames Research Center verticalmotion sim-
ulator (VMS) provides the database for the study. Details of this
simulation can be found in Ref. 7. A simpli� ed rotorcraft model
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Table 1 Motion con� gurations

Con� guration ḧmotion / ḧcommand

V1 1.0
V10 0
V13 0.5

V14
0.5s2

s2 + 2(0.707)0.521s + 0.5212

V15
0.5s2

s2 + 2(0.707)0.885s + 0.8852

Table 2 Task performance standards

Segment Desired Adequate

Ascent, s <6 < 10
10 s at top, ft §2 §5
Descent, s <6 < 10
10 s at bottom, ft §2 §5

Fig. 1 Differences between in-� ight and simulator evaluations from
Ref. 1.

was employed in the simulation study with the characteristicsof the
motion and visual systems serving as the experimental variables.
The vehicle dynamics are

Çx(t) = Ax(t) + Bu(t)

A =
¡ 0.122 ¡ 118

0 ¡ 12.9
B =

14.6

1

x(t) = [ Çh(t ) z(t )]T u(t) = d C (t ¡ 0.15)

An additional 0.12-s time delay was included in visual and motion
channels in the pilot/vehicle analysis to account for VMS delays.7

Table 1 describes the subset of the motion system dynamics investi-
gated herein. The task consisted of a bob-up from a stabilized hover
to a target 32 ft above the initial rotorcraft position, a stabilized
hover, then a bob-down to the original position. Figure 2 is a rep-
resentation of the geometry of the task. The visual cues available
to the pilots were identical in all of the tasks analyzed. Constraints
were placed on the translation time to ensure aggressive pilot be-
havior. Task performance standards are given in Table 2. Five pilots
were used in the experiment and the data from the � rst three of the

Table 3 Motion � delity scale from Ref. 7

Fidelity Numerical
rating De� nition ratinga

High Motion sensations like those of � ight 3
Medium Motion sensations are noticeably different 2

from � ight, but not objectionable
Low Motion sensations are noticeably different 1

from � ight and objectionable

aNumerical rating assigned for purposes of analysis.

Table 4 Pilot rating and fuzzy inference identi� cation summary

Pilot Average Average
A, B, C A, B, C A, B, C composite normalized

Con� guration HQR PIOR MFR score SVM

V1 3, 2, 3 1, 1, 2 2, 3, 2 1.00 1.0
V10 5, 4, 4 5, 3, 3 1, 1, 1 2.19 2.27
V13 4, 3, 2 4, 2, 2 2, 3, 3 1.21 1.28
V14 5, 5, 4 4, 3, 4 2, 2, 2 1.69 2.39
V15 4, 4, 3 2, 2, 3 2, 3, 2 1.28 2.09
Nominal 3, 3, 3a 2, 2, 2a 1 , 1 , 1 b 0.54 ——

aNominal vehicle HQRs and PIORs estimated from structural model results.
bNominal vehicle given an MFR of 1 , that is, last terms in numerator and denominator
of Eq. (1) are zero.

Fig. 2 NASA VMS task geometry.

pilots involved in the simulation were analyzed here. The choice
of pilots whose data were to be analyzed was arbitrary, and limit-
ing the number to three was done for convenience.Each of the three
pilotswhose data were analyzedwere NASA test pilots.For the pur-
poses of this study, the important experimental results were the sub-
jective pilot Cooper–Harper handling qualities ratings (HQRs),
pilot-inducedoscillationratings (PIORs) and motion � delity ratings
(MFRs).7 The scales describing these ratings are shown in Figs. 3
and 4 and Table 3. The pilot-inducedoscillation(PIO) scale of Fig. 4
is taken from Ref. 8. Table 4 summarizes the pilot rating data for
the three pilots whose data were analyzed in this study. The average
composite score shown in Table 4 was an attempt to obtain an av-
erage numerical score re� ecting the HQR, PIOR, and MFR for all
three pilots (A, B, and C). The score was calculated as follows:

average composite score, con� guration j =
3

i = 1

(HQRi ) j

+
3

i = 1

(PIORi ) j ¢
10

6
+

3

1

1

(MFRi ) j
¢ 10

min
all j

3

i = 1

(HQRi ) j +
3

i = 1

(PIORi ) j ¢
10

6

+
3

1

1

(MFRi ) j
¢ 10 (1)
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Fig. 3 Cooper–Harper rating scale.

Fig. 4 PIO rating scale.

where (HQRi ) j is the numerical HQR given by the i th pilot for the
j th con� guration, (PIORi ) j is the numerical PIOR given by the i th
pilot for the j th con� guration, and (MFRi ) j is the numerical MFR
for the i th pilot for the j th con� guration.

In Eq. (1), j represents one of the � ve motion system con� gura-
tions, V1, V10, V13, V14, and V15, in Table 1. The denominator
of Eq. (1) represents the best system as re� ected in the weighted
sum of the three ratings assignedby the pilots. Note that, in Table 1,
con� gurations V1–V15 are merely ordered numerically, that is, the
order does not re� ect a presumed ranking of � delity. The factors 10

6
and 10 applied to the PIOR and 1/MFR ratings means that the worst
Cooper–Harper rating, worst PIO rating, and worst � delity rating
would make equal contributions of 10 to the numerator of Eq. (1).
In contrast, the best ratings would make respective contributionsof
1, 1, and 3.33. The authors are aware of the danger of mixing han-
dling qualities, PIO, and simulator � delity ratings as suggested in

Eq. (1). However, the resultingcomposite scoring approachwas felt
to be justi� ed here given that (1) a single-axis task was involvedand
(2) only the motion system dynamics were varied.

Pilot/Vehicle Analysis
Loop Structure

Figure 5 is a block diagramrepresentationof the structuralmodel
of the human pilot used in the study. This model forms the as-
sumed pilot compensation in the innermost primary control loop,
that is, that loop forming the innermost visual control loop.2,3 The
model was implemented in a MATLAB®-based computer-aided-
design package referred to as PVDNL (Ref. 9). Figure 6 is a block
diagram of the complete pilot/vehicle system, with the structural
model formingYPh . Thus, an inner,vertical-velocityloop is assumed
to serve as the primary control loop. The inner-loop crossover fre-
quency is selected as 2.0 rad/s, as required in the handling qualities
assessment technique of Ref. 4. The basis for the loop-closure se-
quence is that the inner, vertical-velocity loop can be closed with
gainlikepilotcompensationand that the requiredvisual cue, vertical
velocity can be sensed relatively easily by the pilot in the experi-
mental setup.

The outer-loop closure consists of feeding back vertical height
error, again a variable that can be easily sensed by the pilot in
the experiment. The outer-loop compensation is a simple gain,
that is, Yph = Kh . The separationbetween the inner- and outer-loop
crossover frequencieswas selected as a factor of 3. As discussed in
Ref. 10, thecrossoverfrequenciesin successiveloop closuresshould
be separated by a factor of 2–3 in pilot/vehicle analyses. Here, the
valueof the factor is less important than the fact that it was not varied
in the analysis. Thus, the outer height loop is closed at 0.667 rad/s.

Modeling the Inceptor

The cockpitinceptorthatwas used in this experimentwas themain
rotor collective control. The force/feel characteristicsof the device
are signi� cantly different from a cyclic inceptor or control column
in that there are no self-centering characteristics and that there is
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Fig. 5 Structural Model of the human pilot.

Fig. 6 Hypothesized pilot/vehicle system for the bob-up/down ma-
neuvers.

Fig. 7 Collective inceptor.

signi� cant and deliberate dry and viscous friction introduced in the
device’s dynamics as shown in Fig. 7. Because the dynamics of the
inceptor are included explicitly in the structural model of Fig. 5, it
is important to at least approximate the dynamics of the inceptor.
In the absence of a detailed nonlinear model of the collective, an
approximate linear model was developed. Space does not permit a
detaileddescriptionof the developmentof the linear representation;
however, on the basis of a computer simulation of a device with
static and kinetic friction as shown in Fig. 7, the following linear
model was developed:

YFS =
1.0

s(0.1s + 1)

applied force

displacement
(2)

The particular units involved in Eq. (2) are not important here be-
cause the gain in the proprioceptive loop of the structural model is
selectedon the basis of the minimum damping ratio of any quadratic
roots of the d M / EM transfer function of Fig. 5 with all other loops
open,10 regardless of the units involved.

Previous efforts with an earlier version of the structural model
have been directed toward modeling the pilot with a variety of in-
ceptors, including those without self-centeringcharacteristics such
as the collectivecontrolused in this study.11 It was found that match-
ing measured pilot/vehicle transfer functions with such inceptors
required a derivative element to be included in the neuromuscular
system model. This derivative element will also be included here.
Inclusionof this element is consistentwith a humancontrolstructure
in which inceptor rate is commanded and proprioceptivelysensed.

Choosing Pilot Model Parameters

References 4 and 9 provide detailed guidelines for choosing the
structural model parameters so that the crossover model of the
human pilot12 is in evidence. Pilot model parameter selection is

straightforward.Only the results are presented here. Elements YNM

and YPF are given by

YNM =
x 2

NMs

s2 + 2f NM x NMs + x 2
NM

(3)

YPF = K (s + a) or K or K / (s + a) (4)

with the particular equalizationof Eq. (4) dependenton the form of
the vehicle dynamics Yc , in the vicinity of the crossover frequency.
Thezeroat theoriginin theneuromuscularsystemmodelofEq. (3) is
attributable to the nature of the inceptor, as has just been described.
The forms of the last of Eqs. (4) can be interpreted as the pilot’s
internal model of the vehicle dynamics. That is, in the region of
crossover,YPF / s ¢ Yc(s). For reasons described in Refs. 4 and 9, a
constant crossover frequency x c =2.0 rad/s is chosen.

A number of model parameters are considered invariant across
different vehicles and tasks. Nominal values of these � xed parame-
ters can be given as

s 0 = 0.2 s x NM = 10 rad/s f NM = 0.7 (5)

The relatively simple relations of Eqs. (2–4) and the crossover
relation x c = 2.0 rad/s are all that are necessary to implement the
model of Fig. 5. The selectionof one of the three forms on the right-
hand side of Eq. (4) is done so that the resulting open-loop transfer
function

YpYc = ( d M / E)( j x ) ¢ Yc( j x ) ¼ ( x c / j x )e ¡ s e s for x ¼ x c

(6)

that is, YpYc( j x ) follows the dictates of the crossover model of the
human pilot.12 It is important to specify in a precise manner just
how this is done. Limiting discussion to the last two forms of YPF

(those most likely to be encountered in pilot/vehicle analyses), the
right-hand side of Eq. (4) is selected so that

K

YPF( j x )
¢ Yc( j x ) ¼

K1

j x
for

x ¼ x c

K1 arbitrary
(7)

The gain K appearing in Eqs. (4) and (7) is chosen so that, with
all other loops open, the minimum damping ratio of any quadratic
closed-loop poles of ( d M / EM )(s) is f min = 0.15.

Next, thevestibularloop in Fig. 5 is closed.This loopassumesthat
the time rate of change of the output of the primary control loop is
amenable to sensingby the human vestibularsystem. The dynamics
of a motion system such the washout dynamics of a � ight simulator
can be included in this loop. The gain K Çm is chosen so that with all
other loops open but the proprioceptive loop closed, the minimum
damping ratio of any quadratic closed-looppoles of ( d M / EM )(s) is
f min = 0.05. Finally, Ke is selected so that the desired crossover fre-
quency of 2.0 rad/s is obtained. The criteria for selecting K and K Çm

are based on obtaining an open-loop pilot/vehicle transfer function
(M / E)(s) that exhibits, at least in an approximate sense, the high-
frequency (10–15 rad/s) characteristics that have been measured in
experiment.10,13

Model Overview

The pilot model of Fig. 5 establishesthe framework within which
analytical and experimental results will be interpreted. This model
has been developed over a number of years and has been used, in
one form or another, in a variety of pilot/vehicle analyses. In par-
ticular, an earlier version of the model was used to hypothesize the
manner in which the human pilot uses vestibularcues.13 In the study
of Ref. 13, it was demonstrated that a model of the human’s use of
motion cues could be presented that was a simple extension of that
for static tracking, that is, with no motion present. In terms of this
model, motion does not provide fundamental lead compensation in
trackingor regulationtasks,butratherservesto tune thepilot/vehicle
dynamics by decreasinghigh-frequencyphase lags occurring in the
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Fig. 8 Bode diagram of the open-looppilot/vehicle system for nominal
con� guration.

Fig. 9 HQSF bounds for predicting handling qualities levels.

effective open-loop pilot/vehicle transfer function after the funda-
mental pilot compensationis accomplished through the propriocep-
tive loop closure.Figure 8 is a Bode plot of the pilot/vehicle transfer
function M / E from Fig. 5 for the nominal vehicle, showing that the
characteristics of the crossover model of the human pilot are in
evidence.

Handling Qualities Sensitivity Functions

References4 and 9 providedetailedinformationon how the struc-
tural model can be used to providepredictionsof handlingqualities.
The levels of handling qualities are noted on the Cooper–Harper
scale of Fig. 3. Note that, as de� ned here, level 3 handling qualities
extends to a Cooper–Harper rating of 10. The model-based met-
ric that allows prediction of HQR and PIOR levels is the handling
qualities sensitivity function (HQSF) de� ned as

HQSF = (1/ Ke) j (UM / C)( j x ) j (8)

with Ke , UM , and C indicated in Fig. 5.
Using � ight-test handling qualities results, Ref. 4 demonstrated

that the HQSF could be used to discriminateamong handlingquali-
ties levels 1–3. Figure 9 shows the HQSF bounds that resulted from
that study. The predicted handling qualities level for a particular
aircraft was determined by the area in Fig. 9 that was penetratedby

the HQSF when the pilot model was selected as described earlier.
Note that the bounds in Fig. 9 were established using tasks other
that a bob-up/down. Indeed, one of the hypotheses of the handling
qualities prediction technique discussed in Refs. 4 and 9 is that the
bounds should be task independent.

Modeling Simulator Limitations

The techniqueformodelingsimulatorlimitationswas to � rst com-
plete a pilot/vehicle analysis of a nominal vehicle. The nominal ve-
hicle representsthe vehicledynamics representingthoseof the � ight
article as closely as possible, that is, not including any of the � ight
simulator limitations, here limited to variations in motion system
characteristics and to time delays associated with the visual and
motion system operation. The pilot model parameters thus chosen
were then frozen,and the simulator limitations introduced.Changes
in the HQSF were then noted and compared with the HQSF of the
nominal vehicle. Changes in these functions were then considered
evidence of simulation � delity problems.This technique is a re� ne-
ment of that proposed in Refs. 2 and 3. It should be emphasized that
the resulting handling qualities predictions with simulator limita-
tions are not indicativeof those of the vehicle as simulated because
no attempt has been made to change the pilot model parameters
from those obtained with the nominal vehicle model.

Inverse Dynamic Analysis

The pilot/vehicle analysis to be undertaken will involve a com-
puter simulation of the task using the computer-aided-designpro-
gram of Ref. 9. The pilot/vehicle system of Fig. 6 is compensatory,
that is, error signals between command and output variables drive
the system. Although such compensatory structures are useful for
tracking and regulation tasks, their face validity in the discrete bob-
up/down maneuvers such as that being studied here is sometimes
called into question. For example, in the past such tasks have been
modeled by considering a precognitive rapid-response phase fol-
lowed by a compensatoryerror-reductionphase.14,15 Although such
a modeling approach is useful, it complicates the analysis of the
maneuver using the handling qualities prediction technique just de-
scribed.Using the model of Fig. 6 with a 32-ft step input command,
however, produces unrealistic tracking results unless nonlinear lim-
iters are introduced at various points in the pilot model. Again, this
complicates the analysis, and requires additionalassumptionsabout
the saturation values of the limiters. The compensatory structure
of Fig. 6 can be retained, however, while still producing realistic
results by appealing to inverse dynamic analysis.

The rationalebehindusinginversedynamicanalysis is that a com-
pensatory structure can still be employed and produce performance
comparable to that attained in � ight or in pilot-in-the-loopsimula-
tion. The problem is approached by posing the following question:
Using the compensatory structure of Fig. 6, what command trajec-
tory hcom(t ) will produce an h(t) that approximates that obtained
in experiment? The answer can be found through inverse dynamic
analysis. In the examples to be discussed, a distinction is made
between desired and command trajectories. The desired trajectory
is the one we wish the vehicle to follow in the task. The command
trajectoryis one actuallyemployedin thecomputersimulationof the
pilot/vehicle system and that forces the closed-loop compensatory
pilot/vehiclesystemto producethedesiredtrajectory.Here, thecom-
mand trajectorywas obtainedby the expedientof approximatingthe
inverse of the closed-looppilot/vehicle transfer function over a fre-
quency range extending to approximately 10 rad/s, a range more
than adequate for creating an acceptable hcom. Thus, the Laplace
transform of the command trajectory [hcom(s)] was obtained as

hcom(s) = hdes(s) ¢ {1/ [h / hc(s)]approx} (9)

where hcom(s) is the command trajectory as just de� ned, hdes(s) is
the desired trajectoryas just de� ned, and [h / hc]approx is a proper (as
many poles as zeros) approximation to the h / hc transfer function
obtained from the compensatorypilot/vehicle system in Fig. 6, and
is valid up to a frequency of 10 rad/s.
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In implementing Eq. (9), it was typically necessary to include a
pure prediction time, that is, the inverse of a time delay. This pre-
diction time typically was called into play to approximate the phase
lag effects of right-half-planezeros of h / hc when such zeros were
replaced by symmetrical left-half-plane zeros in [h / hc]approx. Im-
plementing such a predictor in simulation was accomplishedby the
expedient of eliminating the predictor and simply delaying hdes(t )
by an equal amount.

The desired vehicle trajectory was de� ned here as

hdes(t ) =
distance

16
¢ cos

3 ¢ p ¢ t

Td
¡ 9 ¢ cos

p ¢ t

Td

+ 8 m

(10)

wheredistancerefers to the requiredverticaltranslationaldistanceof
the bob-up/down maneuvers (32 ft). Td is the completion time of the
maneuver, that is, the � rst time instant at which hdes(t ) = distance.
Based on the acceptabletime to captureof Ref. 7, Td was set to 6.5 s.

Of course, no desired trajectory such as that just created was
included in the VMS simulation. The pilots were simply asked to
meet the performance criteria of Table 2. In the pilot/vehicle anal-
ysis, however, the trajectory of Eq. (10) resulted in smooth pilot
model inputs with performance meeting the acceptable criteria of
Table 2 with the nominal vehicle model.

Pilot Modeling Results
Bob-Up Maneuver Time Histories

The pilot modeling results will be presented in terms of a com-
parison of the HQSF plots for the nominal vehicle and those of the
vehicle as simulated in the VMS experiments.Only the bob-up ma-
neuverwill bediscussedbecausethemodelingresultsare essentially
identical for both bob-up and bob-down. Figures 10–13 show the
results of the bob-up maneuver using the program of Ref. 9. Note in
Fig. 10 how well the output of the compensatory pilot/vehicle sys-
tem, h(t ), follows the hdes when hcom is applied to the pilot/vehicle
system. Figure 13 is of particular interest because it compares the
signals UM (proprioceptivefeedback) and US (vestibular feedback)
in the structural model during the bob-up maneuver. Note that US

is essentially an attenuated version of UM . This will always be the
case in the structural model because UM will always be propor-
tional to the rate of change of primary control loop output [here
ḧ(t )] due to pilot control inputs. In an inanimate controller, such
redundancy would be unnecessary. In the human controller, how-
ever, the vestibular signal may serve as a tuning device for the
proprioceptive dynamics YPF. We will have reason to return to the

Fig. 10 Height desired, height commanded, and height response of the
simulated pilot/vehicle system.

Fig. 11 Vertical-velocity response of the simulated pilot/vehicle
system.

Fig. 12 Collective input in the simulated pilot/vehicle system.

Fig. 13 Proprioceptive and vestibular signals in the simulated pilot/
vehicle system.
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Fig. 14 HQSF comparisons for nominal and V1 con� gurations.

Fig. 15 HQSF comparisons for nominal and V10 con� gurations.

results of Fig. 13 when the fuzzy-inferenceidenti� cation results are
discussed.

HQSF Comparison

Figures 14–18 show the HQSF for the nominal vehicle compared
with that of each of the � ve motion con� gurations of Table 1. The
shaded areas in Figs. 14–18 indicate the differences between the
HQSF for the nominal vehicle and that of the simulated vehicle
with simulator motion limitations.A metric based on these area dif-
ferences was de� ned as follows and its numerical value is indicated
on each of Figs. 14–18:

normalized HQSF metric for con� guration j

=

10

0
j [HQSF( x )] j ¡ [HQSF( x )]nom j dx

min
all j

10

0
j [HQSF( x )] j ¡ [HQSF( x )]nom j d x

(11)

As in Eq. (1), the denominatorof Eq. (11) representsthe best system
as re� ected in the area differencesbetween the HQSFs for the nom-
inal con� guration and any of the remaining con� gurations.The bar
graph of Fig. 19 compares these areas with those from the average
composite scores of Table 4 and a third metric yet to be described.
As can be seen, the orderof motion con� gurations from most like to
least like the nominal in terms of area differences between HQSFs

Fig. 16 HQSF comparisons for nominal and V13 con� gurations.

Fig. 17 HQSF comparisons for nominal and V14 con� gurations.

Fig. 18 HQSF comparisons for nominal and V15 con� gurations.
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Fig. 19 Bar graph comparison of experimental and analytical results.

are V1, V13, V15, V14, and V10. This ranking is seen to agree
with the pilot rating ranking obtained by numerically ordering the
average composite scores of Table 4. The caveat here is that there
was no nominal con� guration in the simulation study, that is, even
con� guration V1 contained time delays from the visual and motion
systems.7 However, an estimate of the HQRs and PIORs for the
nominal vehicle were obtained from the structural model results.
These are shown in the last row of Table 4.

Fuzzy-Inference Identi� cation Results
Introduction

Fuzzy set theory leads to a description of cause and effect rela-
tionships that differ considerably from more classical approaches
used to describedynamic systems.16 For example, in controllingthe
heightof a rotorcraftin the stabilizationmode of a bob-upmaneuver,
the pilot might de� ne control actions as follows:

1) If the height deviation is large and negative (below the target
height) and the verticalvelocity is also negative,my collective input
is large and positive, that is commandingincreasedmain rotor pitch.

2) If theheightdeviationis verysmall andnegativeand thevertical
velocity is small and positive, my collective input is very small and
negative.

The if–then typeof statementsexempli� ed in theprecedingde� ni-
tions are typical of fuzzy algorithms,as are use of fuzzy-conditional
statements such as very small. The fundamental idea in fuzzy sys-
tems is a generalizationof theconceptof a set. In classicalset theory,
there is a distinct difference between elements that belong to a set
and those that do not. Fuzzy set theory allows elements to belong
to more than one set, and assigns each element a membership value
M between 0 and 1 for each set of which it is a member.

Fuzzy-inferenceidenti� cation (FII) can be thought of as a means
of generating membership functions and if– then rules so that the
inputs to a dynamic system can be mapped into the output(s) with
a high degree of precision, that is, with little matching error. The
numerical value of the inputs must be fuzzi� ed to allow applica-
tion of FII, then defuzzi� ed to allow mapping into the numerical
values of the estimated output. This process has been automated in
computer-aideddesignpackagessuch as the MATLAB Fuzzy Logic
Toolbox.17 As will be described, this toolboxwas utilized in analyz-
ing the behaviorof three of the � ve pilots participatingin the NASA
VMS study. The advantages of FII are that no particular structure
needs be assumed for the system being identi� ed, no special inputs
are required, and nonlinearities pose no particular dif� culty. The
primary disadvantageof FII, from a control theoretic standpoint, is
that the models to which feedback control engineers are most ac-
customed, for example, transfer functions, are not natural products
of FII.

Fig. 20 Surface view plot.

Interpreting FII Results: Surface View Plot

The if– then rules that result from FII can be interpreted graphi-
cally by means of surface view plots. Consider a system to be iden-
ti� ed that has two inputs [x1(t ) and x2(t )] and one output [y(t )].
Next, set x2 equal to its most negative value obtained in the identi� -
cation experiment.Then, allow x1 to vary across the range of values
encounteredin the experimentand allow the if– then rules to trigger,
that is, allow them to create the output values. Next, x2 is incre-
mented and the procedure repeated. This process is continued until
the most positivex2 value is used. A three-dimensionalsurface view
plot can now be created representing y = f (x1, x2), an example of
which is shown in Fig. 20. If more than two input variables are in
evidence (as will be the case here), surface view plots can still be
obtained; however, the remaining input variables are held constant,
typicallyat their averagevaluesobtained in the identi� cation exper-
iment. Other constantvalues, however, can be chosen.Note that the
selectionof constantvalues for the variablesnot explicitlyplotted is
not equivalent to assuming that they take on such constant values in
the FII; rather, this assumptionis requiredforplottingpurposesonly.

FII and the Structural Pilot Model

The analytical framework provided by the structural model can
also provide some guidancein interpretingthe results of FII through
surfaceviewplots. In discussingthe structuralmodel, it has beenhy-
pothesized that the activity in the proprioceptivefeedback loop de-
termines thehandlingqualitieslevel assignedto the vehicleand task.
This proprioceptiveactivitycan also be examinedin FII throughsur-
face view plots. Consider Fig. 5, where now d M ´ d c and M ´ Çh.
Here d c and Çh serve as inputs x1 and x2 with d c also serving as the
output y, d c is both a pilot input and output, and the surface view
is indicating how the variables on the horizontal axes d c and Çh are
contributing to the pilot output d c on the vertical axis. If there is no
activity in the proprioceptive loop, the resulting surface view plot
will be planar and horizontal. In addition, according to the funda-
mental hypothesis invoked in Ref. 4, the handling qualities will be
optimum.This idea is identical to the no trackinghypothesisoffered
in Ref. 18: “Optimum handling qualities demand minimum closed-
loop controlby the pilot.” As will be seen,onepossibleexperimental
measure of the activity in the proprioceptiveloop would involve the
geometry of the surface view plot just described, that is, how much
it deviates from a horizontal planar surface. One measure of this
deviationwould be the volume beneath the surface view plot, where
the volume is measured from a planar horizontalsurface containing
the lowest point on the surface view plot. Obviously, other choices
are possible, for example, the difference between the surface area
of the surface view plot and that of a horizontal planar surface with
an area equal to that of the vertically projected surface view plot.

Identi� cation Results

Figure 21 shows the assumed pilot inputs and pilot output for the
bob-up/down maneuvers. The appearance of the collective motion
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d c as both an input and output variable re� ects the role of that vari-
able as a pilot output and as a hypothesized feedback quantity in
the proprioceptiveloop of the pilot model of Fig. 5. At this juncture
a question may arise as to why the FII does not simply ignore all
input variables save d c and then produce a one-to-one mapping be-
tween the d c input and the d c output. The answer is that FII assumes
that all of the inputs speci� ed by the user affect the output. The FII
algorithm adjusts the membership functions and fuzzy rules to op-
timize the mapping of this prescribed input–output set. Figure 22 is
a sample comparison of the collective time history from one of the
bob-up maneuvers and the FII that resulted. The FII output is ob-
tained by using the assumed pilot inputs shown in Fig. 21 as inputs
to the identi� ed fuzzy model of the pilot.The trainingparameter op-
timization for the FII was based on the Sugeno–Takagi–Kant model
that implies that the output is a linear combination of the inputs.17

Four triangular membership functions were assigned for each in-
put, resulting in 256 (44) rules being generated as part of the fuzzy
logic. The FII training was performed until the root-mean square
error between model and pilot (VMS simulator) output was less
than 1 £ 10 ¡ 5 in. All of the FII results were of the quality shown
in Fig. 22. As an example of the nature of the surface view plots,
Fig. 23 shows results for a single bob-up and bob-down maneuver
for pilot A for con� guration V1.

Because three repetitions of the two separate maneuvers (bob-
up and bob-down) were utilized in the experiment, some means of
averagingthese was necessary to obtain a single metric for compar-
ison with handlingqualities, etc. The following averagenormalized
surface view metric (SVM) was created:

average normal SVM, con� guration j

=
3

i = 1

3

k = 1

VBU k j
+

3

k = 1

VBDk j

min
all i& all j

3

i = 1

3

k = 1

VBUk j
+

3

k = 1

VBD k j
(12)

where i represents results for the i th pilot, VBUk is the volume above
minimum vertical coordinate on the surface view plot for the kth
bob-up, VBDk is the volume above the minimum vertical coordinate

Fig. 21 Hypothesized pilot inputs and output for FII in the bob-up/
down maneuvers.

Fig. 22 Example of FII: comparing collective time histories from experiment and identi� ed fuzzy pilot model.

on the surface view plot for the kth bob-down, and minall i& j is the
minimum sum of thevolumesfor all pilots and con� gurations.In the
bob-down maneuver, the collective, vertical-velocity and vertical-
acceleration signals were modi� ed so that the surface view plots
could be more easily compared to those in the bob-up maneuver.
For the bob-down maneuver, these modi� cations were

(vertical acceleration)mod = ¡ (vertical acceleration) ¡ 64 ft/s2

(collective)mod = 11 ¡ collective in.

(vertical velocity)down = ¡ (vertical velocity) ft/s (13)

Also, the remaininginput variablesnot includedon the surface view
plot, that is, height error and vertical acceleration (for all but con-
� guration V10) were set to values representing the terminal part of
the maneuver.

The last column of Table 4 represents the average normalized
SVM calculated as given in Eq. (12). The bar graph of Fig. 19
compares the average normalized SVM and the average composite
scores. The order of the motion con� gurations from most like to

Fig. 23 Surface view plots for bob-up and bob-down maneuver: pilot
A, and con� guration V1.
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least like the nominal is seen to be V1, V13, V15, V14, and V10.
One sees that the orderingof the last two con� gurationsdiffers from
that establishedwith the averagecompositescores.Nonetheless,the
resultsare noteworthy.Metrics other than Eq. (12) can be employed,
of course. The metric of Eq. (12) was chosen because of its relation
to activity in the assumed primary control loop in the bob-up/down
maneuvers. Obviously more research in this area is warranted.

Discussion
One important hypothesis regarding pilot utilization of proprio-

ceptive and vestibular cues can be advanced based on the research
described herein, namely, that in a control-theoretic sense both the
vestibular and proprioceptive feedback signals provide redundant
information. However, the vestibular feedback may be of higher
quality, with a broader bandwidth than that obtainable from propri-
oceptors. In this light, the vestibular feedbackmay serve to tune the
dynamicsof theproprioceptivefeedbackloop in additionto decreas-
ing phase lags in the transfer functionof the open-looppilot/vehicle
system. When the quality of the vestibular information is degraded
fromnominal, the FII clearlyshows an increasein proprioceptiveac-
tivity that also has been hypothesized to be a harbinger of degraded
handling qualities.4 Degradations in handling qualities were indeed
noted in the pilot ratings from the simulation experiment when the
motion system characteristics were degraded through either gain
reduction or washout dynamics.

The results presented have been limited to a single-axis control
task. Extension of the results to multiaxis tasks is an obvious pre-
requisite to the practical evaluation of simulator � delity. Research
is continuing in this area.

Finally, the authors are aware that somewhat specializedsoftware
is needed in applicationof the analysis and identi� cation techniques
thathavebeendescribed.The MATLAB- basedpilotmodelprogram
describedin Ref. 9 is availablefromthe secondauthor,and the fuzzy-
inference software is commercially available.

Conclusions
An analytical and experimental investigation of the manner in

which pilotsperceiveand utilizevisual,proprioceptive,and vestibu-
lar cues in a ground-based � ight simulator led to the development
of a pair of metrics that were used to assess simulator � delity.

1) The analyticalapproachused an establishedpilot/vehicle anal-
ysis technique based on a structural model of the pilot from which
were obtained HQSFs. A metric based on area differencesbetween
the sensitivityfunctions for the nominal and simulatedpilot/vehicle
systemwas shown to correlatewell with compositerating scoresob-
tained from a simulationexperimentconductedon the NASA Ames
Research Center VMS.

2) FII was exercised using the NASA simulation data for three
pilots. A total of 90 separate identi� cations were completed. After
identifying the fuzzy pilot models for each pilot, surface view plots
were obtained that graphically displayed the results of the identi-
� cation. A metric based on the geometry of these plots was also
shown to correlate well with the composite rating scores obtained
from the experiment.

3) Further research is warranted in extending this methodology
to multi axis tasks and in re� ning the � delity metric used in the FII
results.
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